teawrecks ,

Any sufficiently high quality audio stream from my Plex or Tidal, always set to max volume in app/OS settings -> Topping D30 -> JDS Atom -> Sennheiser HD6XX.

Good enough for me.

jonwyattphillips ,

Not an audiophile, so bexcuse the ignorance, but what is the logic of max volume in app?

teawrecks ,

The goal is to send the exact, unmolested digital samples from the file out to the DAC, which then sends its analog signal to the amp where you worry about how much to amplify that signal for listening.

When you set everything to 100% volume in software, you can assume that there is no software doing anything to alter the digital signal before sending it to the DAC (scales each sample by 1.0). But when you're under 100% volume in software, it assumes you don't have any analog control over the volume, so it needs to step in and alter the digital signal so that it shows up quieter to the DAC (ex. scaling each sample by 0.25). Depending on how that's implemented, it can result in losing resolution and thus quality of the signal.

I think this mattered more on older software that's more likely to use a smaller bit depth, but bugs happen, so why risk it and spend those extra cycles on a process that can only result in a worse signal, right?

bloodfart ,

There’s some confusing stuff in this response so before I get into the weeds, for all the people reading out there: you don’t lose quality by using your operating systems volume control.

Okay, with that out of the way, let’s say you wanted to adjust the volume of a digital stream that’s composed of samples. Each sample represents the original analog signals voltage at that slice of time when it was encoded. The number of slices per second is the sample rate, expressed in kilohertz and the voltage of the original signal is converted to a number, which is stored as a binary value whose length is expressed in bits, each of which can be either a one or zero and is referred to as the streams bit depth.

So you could have a stream whose sample rate is 44.1khz for example and that would mean that it was sampled 44,100 times per second. That same stream might have a bit depth of 16, and that would mean that the original signals voltage level was divided into 65,536 possible values. Depending on some other factors, that stream might just be cdda (a compact discs digitally encoded song information).

Now let’s say you had a computer that was handling that stream and was asked to reduce the volume of the stream by half by a user who can only stand to listen to it at that volume.

One way to do that job would be to decode the stream back into an analog voltage, attenuate it, recode it and then send it on its merry way. That would incur a decoding operation, require routing of that signal to either dedicated hardware to perform the attenuation and send the signal back and an encoding operation to make that now half as loud signal back into a digital stream that can then be sent wherever it’s destined.

Another way of handling that operation is simply dividing every slice of the streams 16 bit component by two, something that computers are very good at doing quickly.

It should come as no surprise then that the latter process is generally how it’s done.

But does that reduce quality or result in worse signal? That’s the question, right?

Well, any variation of one bit or less could be essentially deleted. A person could say “ah hah! The signal has been degraded!” And they’d be technically correct, but it wouldn’t matter.

In our example, the computer whose hands are all over our precious data stream is sending that adulterated information to a dac, which true to its moniker will convert the signal from a digital stream into an analog signal. That analog signal will then be sent to an amplifier with an analog volume control and from there to a set of speakers.

The amplifiers analog volume control is a resistor in the shape of a 3/4 arc with a wiper that can move back and forth across it, allowing anything put in one side to be resisted (or in the case of our ac signal, impeded) a varying amount depending on the users selected position of the knob attached to the wiper.

Okay but what is resisting a signal though? Well, a resistor will reduce the voltage between its two ends proportional to its resistance, measured in ohms. More ohms means more resistance.

For the purposes of our example, let’s assume the user has chosen an amplifier and dac combination such that the amplifiers volume control at minimum setting applies the minimum resistance necessary to completely attenuate the dacs maximum output and is not applying any resistance at its maximum setting. In other words, that it all works as expected and is perfect.

In this case, what’s the difference between sending a stream with data corresponding to a .5V signal that gets amplified as opposed to a stream with data corresponding to a 1V signal that goes through a resistor to bring it down to .5V before being amplified?

nothing

In fact, the digitally attenuated stream will probably sound better (closer to the original) because it’s not subject to the bourns/alpha ppm lottery!

Now.

Don’t let this stop you from listening to music however you like. My ass is itt admitting to using 40 year old record players to make sounds to cook to. But don’t worry about the computers volume control.

teawrecks ,

Yes, if everything aligns perfectly, there is no impact. The bit shift would be when you set the volume to exactly half, but that's probably not going to be the case. The app volume control alters the signal slightly, multiplied by the OS altering it slightly, which has a virtual certainty of introducing a floating point rounding error on every single sample, so now the ratios between your samples is ever so slightly different. And for what reason? What did that operation gain you?

And no you're not going to hear a difference, but the point of being an audiophile is less about hearing a difference, and more about good quality preservation practices.

bloodfart ,

okay, lets consider the worst possible rounding error in a 16 bit division operation:

i'll divide the level of one sample by some number that will not divide evenly, lets say three, and consider the impact of the rounding error. for the purposes of making it so I know there will be a rounding error i'll choose a number that three has a really bad time dividing into, say 65536.

65536/3=21845.3 with the .3 component repeating. perfect, that's exactly horrible!

so if we were to just do the simplest rounding possible to fit that into a 16 bit integer, the decimal component is dropped, rounding down to 21845.

but what is the significance of that error? a samples volume level that's one integer value off introduces a .003% error in level, but this isn't supposed to be 21846, it's supposed to be 21845.3. so the error that's introduced is .001%!

that's a pretty tiny error, but what if it was periodic and consistent enough to produce a harmonic component? that'd create harmonic distortion!

lets say there's a periodic and consistent rounding error that has a frequency of 1000Hz. so every thousandth of a second, the rounding caused by the volume being set at 1/3 causes a rounding error and makes a sample off by .001%. such a repeating error would introduce a harmonic component into the signal that the dac produces and be measurable as harmonic distortion at 1000Hz!

but how measurable? well if, for example, the harmonic component of the signal introduced was at it's absolute worst, and oscillated between a positive going error and a negative going error, it could introduce a peak at 1000hz of...

.002% of your dacs DBFS. so far below the noise floor it's immeasurable.

even if you had two software volume controls set at 1/3 daisy chained together doubling that error it would be immeasurable. although if we picked a computer software package to use instead of a bunch of hypothetical worst cases the total volume of a signal would be summed and then applied once in order to minimize just this problem. the people writing that software are pretty smart and doing that saves their program a step!

but measurability or audibility isn't the point, as you said. the point is to reproduce the sound as accurately as possible! so it really doesn't matter how tiny the effect of rounding errors due to prime denominator volume settings is if it's larger than the effect of the analog volume control that whatever signal the dac manages to reconstruct from our mangled stream is put through. we're trying to adjust the volume down to a comfortable listening level, after all.

so how bad is the volume control? well, if i were to go to mouser and look at the potentiometers section, i could choose one with a tolerance as low as... .5%! and that's a three-gang model that costs $50!

but what if i used a precision potentiometer? why, there's a .15% tolerance part that's available for the very reasonable price of $825!

okay the precisions are out of my price range, but those $50 ones could work. tolerance is just a number anyway, right? we want linearity! what does the datasheet say about linearity... 2%!

that's not even considering the amplifier design's distortion. lets assume it's perfect.

so just passing the signal from the dac through the amps volume control causes possibly 200 times more error and distortion than adjusting the volume control in the computer.

i get the pursuit of the best possible reproduction, but the computer volumes got those cermet pots beat hands down.

teawrecks ,

Interesting point. What about the case where you have your digital volume set to 1%? Would this not squeeze the samples into 1/100 the dynamic range? If I set my volume to 1% it seems to me like those samples now have to all exist within the bottom 1% of the 16b range. Do you not lose at least 5-6 bits of precision on your signal doing this?

bloodfart ,

You don’t lose precision when you lower the volume (in either an analog or digital realm). You lose actual information!

Let’s say you have a recording you can only listen to with your volume at the 1% setting. Analog or digital, it doesn’t matter.

Your whole system has an acoustic noise floor at something like idk, 10 acoustic decibels. That is a really charitable number because I’ve never measured one that low and it directly corresponds to the loudness of another healthy persons breathing at rest. To give you an idea of how quiet that is, the acoustic decibel scale generally puts a ticking mechanical watch at twice as loud (20 decibels).

I don’t want to talk about decibels because I don’t want to explain the math in the detail I’ve been giving these posts, but we gotta at least cover a little:

Decibels are the measure of sound energy, their scale is logarithmic, so the base of the log function determines how many of decibels make for twice as much.

There are different decibels for measuring in different mediums with different references and they even use different logarithm bases.

Acoustic decibels are log10, so that 20 decibel ticking wristwatch is twice as loud as a person breathing and half as loud as whatever the workplace safety scale says 30 decibels is equivalent to.

Okay so now that we have a floor, we need to establish a ceiling. Let’s say that you did everything right and hooked all your stuff up, turned the volume on the amplifier all the way down, put your headphones, played a maximum volume test tone, maxed out the volume on the software, then turned the amplifiers volume control up until it caused you immediate physical pain. If you have really good hearing, that’s 115 acoustic decibels. Let’s say you got to 120 with the amplifiers volume control up all the way.

Okay, so the noise floor of your headphones on your head is 2^11 as quiet as the loudest sound you can tolerate hearing.

Now you set the volume control to 1%. Doesn’t matter which one. Everything gets 99% quieter. The parts of the signal that were 120 decibels before are now 1.2 decibels. They have been divided by 100, and it’s possible that rounding errors have added .006% error to their harmonic content. .006% of 1.2 is .0072 decibels. Not only is the loudest sound you can stand to hear now quieter than a person breathing, it’s below the noise floor of your system. Far, far below the noise floor. And any rounding error from dividing by 100 is as well!

Okay but what happens when you’re listening to music though? Let’s put aside all that hypothetical stuff and get rockin! Instead of talking about test signals and boring crap, let’s talk about a song!

So same established setup from before, but now you’re listening to a recording of someone playing the banjo while rocking in a chair. There’s a lot of different harmonic content in this signal, the birds chirping, the persons breathing, the wind, the chair creaking the boards of the porch and of course, the instrument itself!

All these different things are at different volumes and they represent components of the harmonic content of the signal you’re listening to. When you turn the recording down, you’re attenuating the signal. All of the signal. If you apply enough attenuation through your chosen volume control to lower the level of the banjo by 40 acoustic decibels then all the other components of the signal are lowered by 40 decibels too. If they were previously 50 acoustic decibels through your headset, they’re part of the noise floor.

The quietest information is simply lost.

Edit: there are massive amounts of information that have been simplified so much as to make this post incredibly inaccurate. Please do not use this as a reference for understanding how we measure or interact with sound. I’m sorry for not going into greater detail but it’s too early to explain the relationship and history of acoustic decibels and decibels per volt.

teawrecks ,

I'm sorry you have to type so much, I am familiar with most of it, but I appreciate your effort to make sure we're on the same page without being a douche about it lol. It sounds like we're saying similar things, but I don't understand why lower precision is different from losing information. To me, that's the same thing, it's a lossy operation.

So the thing is, I have a pair of desktop speakers without any physical volume control that I primarily use for convenience. And for whatever reason, a comfortable listening volume with them is between 1-8% in the OS volume control. I guess the internal amp is just hardwired to be way too loud?

Anyway, I assume that this setup is resulting in objectively lower quality output than if I were to have a 100% signal going to a decent quality DAC/amp with analog volume outputting to the same speakers. And not in a "technically" kind of way, but in a very real "we just crushed the signal into 1/25th of its original scale" way. Would you agree? Am I mistaken?

bloodfart ,

no worries. i've been enjoying going back through this. you're basically me 25 years ago emailing the winamp ppl to find out what volume control i should use to turn down (for what!).

so there's a misconception here between compressing a signal and attenuating it. imagine you are looking at a frequency spectrum chart of some song instead of listening to it. it's got some loud sounds, which show up as big peaks on the chart, and some quiet sounds which show up as small peaks on the chart and there's a noise floor which is the stuff in the chart that's not a peak at all.

if you plug a potentiometer in between your signal and the spectrum analyzer and turn down the volume, youll see all the peaks, loud and small, be reduced in amplitude by the same amount. this is called attenuation. the quieter sounds could be reduced until they are part of the noise floor and become imperceptible while the louder sounds would still show up.

it doesnt matter if you achieve attenuation by dividing the 16 bit level component of a stream of samples or by using a resistor as a voltage divider. the quiet and loud sounds are affected equally. those two ways of achieving attenuation function the same because they are performing the same operation.

now lets say you plug a rack mount compressor effects module in between your signal and your spectrum analyzer instead. you could apply more compression to the signal and achieve exactly what you describe, a smaller distance between the quiet and loud sounds, reduction of the original scale, removal of dynamic range, effective bit depth reduction! it would be actual factual "we just crushed the signal into 1/25th of its original scale".

and if you used a module (or software package) with the capacity for it, you could tie the compression ratio to a gain control so that the compressors output got quieter when you turn the compression ratio up, resulting in more heavily compressed sounds at a quieter volume. that's a neat little mastering trick to make recordings sound "lively" and "intimate". makes all those pick scrapes and finger swishes stand out alongside the plucked strings.

you could also do the inverse, make all the quiet sounds louder, so that the guitar is as loud as the kick drums' transient and it would make your whole song sound much louder and stand out better against background noise in a difficult listening environment like a car radio or cell phone inside a solo cup.

there are even modules that do the opposite, called... expanders! they do what you might expect, increase the dynamic range between loud and quiet sounds. a company called DBX made models for use in home stereos in between tape decks and the amplifier in order to reduce the noise floor of tapes.

but it's none of that is attenuation, the operation that your volume control provides.

and you're correct, both compression and attenuation are lossy operations no matter if they're done with analog electronics or by a microprocessor operating on a buffer somewhere in memory. the difference is that attenuation is literally required to prevent permanent hearing loss and possible equipment damage, while compression is not.

teawrecks ,

it doesnt matter if you achieve attenuation by dividing the 16 bit level component of a stream of samples or by using a resistor as a voltage divider.

This is the part where I'm not following. In my head, if you're using analog hardware of sufficient quality, you can attenuate the signal to be very quiet, but still preserve it's dynamic range. In fact, the DAC is already outputting a very weak, but faithful analog reproduction of the signal, and an amp with a decent S/N ratio is able to bring that very weak signal up to a listening volume without introducing enough noise to matter.

Hypothetically, if for some reason, you took the signal post-amp, used a pot to attenuate it again down to the energy of the post-DAC level, and again ran it through another amp you would theoretically have the same signal still (I understand that in the real world we would start amplifying noise and the signal would degrade, but stick with me). Nothing about the process necessarily introduces noise and thus destroys the signal, you're only limited to the quality of the components at that point. If you had an infinite chain of theoretically perfect amps and pots, you could repeatedly attenuate and amplify the signal forever without ever losing any quality. It's an analog process that theoretically preserves the signal, +/- some amount of error due to physics.

Meanwhile, 16b is 16b. If you start shrinking all samples relative to each other (ex. down to 1/64 the original volume, or 10b of resolution), different values inevitably have to clamp to the same values (fitting 64k values into 1024 values), losing information and resulting in poorer quality. If you then try to send that 10b signal through a DAC/amp to achieve the same listening volume that you would have had before digital attenuation, it's just a 10b signal bit shifted up. All your LSBs are 0s. You can't possibly attenuate digitally, and then amplify it in any way and hope to get the same signal back. It's a discrete math process which destroys the signal by design.

Would you agree?

bloodfart ,

the effect of attenuation is the loss of intensity of signal.

loss. it goes away.

attenuation is a lossy process. information in the signal is literally absorbed and radiated away as heat. it cannot be reconstructed because it's gone.

it isn't an analog process that theoretically preserves the signal, it's an analog process that explicitly destroys a component of the signal.

but what if it wasn't...

okay, lets assume for a second that you have a signal with the same harmonic content as one of my previous examples, a high peak when viewed on a frequency spectrum chart, a low peak when viewed on that chart and everything else. these three parts of the signal represent the loud, quiet and "silent" parts of the signal respectively. unlike the previous example we'll let our noise floor for the silent parts be infinitely low. for now. so you start hooking up your perfect amps and pots in line and setting them all to 1% or so and listening. it's sounding pretty good at first, but once you get a few deep, you start getting white noise and clicks and pops and all kinds of craziness.

what the hell! all this equipment is theoretically perfect, why is there noise? it can't be coming from the perfect equipment!

it's not. it's coming from the medium. in our theoretical example all these amplifiers and pots are hooked up with conductive wire. the signal has to propagate through that wire from component to component. atoms of copper are being excited and losing their excitation in proportion to the signal. their state of excitation is being amplified over and over again. the noise is in the wire. by amplifying it over and over again you made it audible. you can't ever escape it. signed, listening to noise gang. come to my modular synth show.

okay, so now that the possibility of ever attenuating a signal without losing information is hopefully put to rest, lets turn to the digital attenuation of the signal in comparison.

level attenuation over the digital domain is also a lossy process. what's being misunderstood here is that the levels aren't being shrunk relative to each other, they're each being divided and the signal that's reconstructed by the DAC no longer contains the quiet parts.

just like those quiet parts were absorbed and radiated as heat by the resistor, the digital version of attenuation does away with the need for all that physics crap and simply deletes them from the stream.

if the levels were being shrunk relative to each other, you'd be compressing the signal like when you use the bitcrusher pedal for your guitar and there would be lots of harmonic distortion. but attenuation and compression are different processes and have significantly different results.

consider a quiet sound, your 1/64th volume signal. a sine wave. its encoded to represent 1/64th of the maximum level of the adc's input because when it was recorded, it represented 1/64th the maximum level of the preamp/microphone/whatever that was plugged into the adc.

is the quiet sine wave of lower quality than one that's using the full bit depth of the adcs output because it's intended to represent the maximum level that the adcs input saw from the preamp/microphone/whatever?

of course it isn't. it just wasn't loud.

and if your loud sine wave was electrically generated by a theoretical perfect function generator which contains no distortion or other sonic content before being sent to the adc, would it be more damaged if it's amplitude were divided by 64 before being decoded or if it were decoded and sent through a resistor whose value was chosen specifically to dissipate 63/64ths of it as heat in order to make it as quiet as the quiet sine wave?

of course it wouldn't.

to your last question, let me rephrase it into something I can agree with: you cannot possibly attenuate and then amplify in any way and hope to get the same signal back. It’s a lossy process which destroys the signal by design.

teawrecks ,

Ok, the analog attenuation part makes sense now I think. I assumed that an amp increases the amplitude of a signal, and that a pot achieved the inverse (i guess dividing the signal?) but it's not, it's effectively subtraction?

Back to my DAC/amp, realistically am I ever intentionally attenuating the analog signal in order to get it to a listening volume? Or am I only ever amplifying it? I think that's the main difference in my head. If I output my digital signal to the DAC at 100%, and then only ever amplify it to a listening volume, then there's no way for the signal to be attenuated at all, right?

is the quiet sine wave of lower quality than one that's using the full bit depth of the adcs output because it's intended to represent the maximum level that the adcs input saw from the preamp/microphone/whatever?

of course it isn't. it just wasn't loud.

No, yeah, that makes sense. I was thinking that, it didn't matter how strong the signal was, as long as the full sine wave was still present, then quality is preserved. So dividing it down to be a very small voltage, or amplifying it up to be super large, as long as the relative voltages of the signal are retained, we wouldn't lose any quality (is my, likely flawed, impression).

I think I just don't know how to think of analog signals. I understand frequency response in theory, but I can't talk about a signal intuitively in terms of frequency space like you do. Does perfectly amplifying a signal change its frequency response? You don't have to keep answering, at this point I'm just poking your brain lol.

bloodfart ,

if you use the volume control on your amp, you're attenuating the signal. that's assuming that the amplifier uses a pot as a voltage divider on the input rather than a gain control for the amplifier IC it uses. both are common, but if it's used as a gain control you're relying on the linearity of the pot to inform the gain of the amplifier IC and generally frequency linearity across wide gain ranges aren't fantastic which is why old stuff that used a bunch of discrete transistors instead of chips had set gain and varied the input signal level with an attenuating pot acting as a voltage divider. there are counterexamples. this is complicated.

if you don't use the volume control on the amp then there's no attenuation. the downside is that it's really loud. too loud for safety. too loud for comfort. sometimes too loud for the sustained operation of the equipment.

perfectly amplifying a signal does change its frequency response by adding noise picked up in the process of conveying that signal to and from the perfect amplifier. the noise is added because it's amplified. there's some ways to lessen the effect of this, some are effective enough to allow absolutely miniscule signals like those produced by a moving coil phono cartridge to be amplified to tremendous volumes. but there is always noise.

all this talk about amplifiers and volume control is wonderful, but have you considered the stuff that comes after the amplifier? your headphones are a great example: if you pan over to the right channel so that only the right headphone is making sound and slowly pull the headphone away from your ear you'll hear the frequency response change. the lowest notes will go away, then higher and higher pitched notes will become inaudible until all you hear are tinny high frequency sounds. that's the effect of attenuation of the sound wave propagating through the air. naturally in air, that attenuation acts as a high pass filter, reducing the volume of the lower pitched notes more than higher pitched notes.

if you pull it away in time with the beat of the music it acts like a bpm synced filter effect or a wah pedal (depending on your age).

the distance from the driver to your ear has an effect on the sound you hear. is that distance correct? everyones heads are a little different...

how about the ears themselves, are they clean? it's gross to think of, but wax acts just like a pair of earplugs.

and what about your own brain. i'm not even close to versed in psychoacoustics but just imagine agent smith from the matrix saying "you think that's music you're listening to?"

there's nothing wrong with wanting good quality equipment and for it to perform as close to perfect as possible but at some point we're picking only the most perfectly ripe, unblemished, peak season tomatoes to make salsa.

teawrecks ,

if you don't use the volume control on the amp then there's no attenuation. the downside is that it's really loud.

Ahhh, I think this is the part I was missing. So I should think of an amp as "injecting" a fixed amount of energy to the signal, way more than I need, and then the volume pot attenuates it back to a comfortable volume. That makes sense since we've established that pots attenuate, which necessarily destroy the signal. I still had it in my head that the amount of energy used to amplify the signal was proportional to the volume knob position.

I didn't know how air affected frequency response, but that makes sense.

As for how clean my ears are, I'm completely deaf, so who cares?

jk 😁. Thanks for the talk, I learned some things!

bloodfart ,

No problem. It’s nice to talk about this stuff. If you want the skinny on amplifiers:

There’s two parts: the volume control and the amplifier. The volume control sits in between the input and the amplifier circuit itself. The amplifier circuit can be thought of as a fixed multiplier of whatever signal goes in. If there’s x50 gain then it’ll make an input of 20 into 1000 arbitrary units(tm). An input of 2 would be made into an output if 100au and you choose between those two inputs or any number you like with the volume control, acting as an attenuator before the amplifier starts multiplying the signal.

To look a little closer, the amplifier takes a big dc voltage and modulates it based on the small input voltage. If it was a tube amplifier, all the dc voltage gets put on the plate of the tube, the input is sent to the grid (a literal grid of wire in between the plate and cathode) and electrons jump through the grid to the cathode in proportion to the grid current. If the grid current is a song, then the massive amounts of electrons gathered at the high voltage plate will jump across to the cathode in proportion to it and if an enterprising person were to put a transformer and speaker in between the cathode and their path to ground those electrons could be used to move it back and forth!

Of course, they only do that in a vacuum and when heated up, so all that takes place inside an evacuated glass tube with those parts crammed into it next to a light bulb filament to make them toasty.

Point is: you’re not even getting the same electrons!

Your solid state amplifiers are doing the same thing but with transistors instead of vacuum tubes. Feed the input into the base of the right kind of transistor and it’ll let more or less voltage move in the direction of its arrow.

You get a few of the input electrons with a transistor, but it’s mostly electrons from the big dc voltage.

teawrecks ,

Ahh ok, that makes more sense. I think I never saw the connection between a transistor and an amp until now. Using a small signal to modulate a different, larger signal. Or like a relay.

feoh ,

Mostly? I have uncompressed FLAC encoded music on my Plex server, and I listen to that streaming through over ear (Bose NC-700) headphones on a computer, or on our home theater system (Monitor UK, 2 stand speakers, 2 rear wall speakers, 1 subwoofer) with an Onkyo receiver.

I also listen to Tidal hifi a bunch and electronica on youtube because some of the Boiler Room and other club mixes are pretty dope :)

Vibi ,

My current chain is Tidal + Schiit Asgard DAC/amp + Audeze LCD-X. Moved from Spotify to Tidal last month and will never go back. I definitely prefer headphones over speakers, but have really been enjoying IK Multimedia iLoud Micro Monitors.

MigratingtoLemmy ,

Did you look at Qobuz too? Seems pretty decent

Vibi ,

I did! I do think it's a great alternative, but when moving some of my playlists over, I saw too many missing songs. They were my more niche playlists/genres so I was kind of expecting it. Tidal didn't have all of them either, but did have more so I decided to go with them.

2br02b ,

Moved from Spotify to Tidal last month and will never go back.

Will you consider moving back if Spotify bring HiFi as it announced? I mean no once can beat it's catalog.

Vibi ,

I definitely can't argue about the size of their library! While the continued dragging of their feet on HiFi was frustrating (years of telling us it was coming), the thing which finally drove me away is their constant tweaking of playlist and queue management.

I mainly use their desktop client and controls would disappear with each update- no way to block songs, inability to remove a song from auto generated queues, playlists not syncing between devices, songs being weighted in a shuffle. I made a post on their forums about the missing options for their autoplay queues- their response was that while there was no button or context menu option to remove a song, I could select it and use the delete key. I just gave up on whatever type of user experience they want me to have.

2br02b ,

Ah, makes sense.

m0yP ,

At home: Spotify through Amazon Fire TV through Klipsch The Fives.

On the move: Spotify through Jabra Elite 4 Active.

In the bathroom: Spotify through UE Boom.

I really want to ditch Spotify, but in the meantime...

Oiza ,

Same, but I want to export my playlists and liked songs from Spotify. Going through that manually atm seems like too much of a hassle.

hightrix ,

If you plan to move to another service, there exists a number of tools to aid in moving playlists between streamers. It is really easy, once you find a good one.

Helped me break the feeling of being locked in due to have 100s of playlists.

m0yP ,

Tried one service but didn't work with some Spotify lists, like the yearly ones. Any good recommendation that might include these as well?

HEXN3T ,
@HEXN3T@lemmy.blahaj.zone avatar

Well, TIDAL just got some price cuts, and their library is pretty comparable. Just in case you didn't know.

m0yP ,

Just read that today! Thank you.

figaro ,

Bluetooth Xiaomi headphones because convenience is king (and I can't afford to pay more than $200 for audio equipment lol)

bitwolf ,

Plex -> Android -> Synfonium (use internal decoder) -> Meizu Hii+ DAC -> IEMs

I lose some information because of the Android resampler however most of my library is 16/44.1 flac. Although my collection of 24/96.2 is growing.

HEXN3T ,
@HEXN3T@lemmy.blahaj.zone avatar

TIDAL, K3/K7 (the K7 isn't portable), Sennheiser HD600s, and a pair of Hifiman HE1000s that I just bought. Both DACs work on all of my devices.

intensely_human ,

At the houses of my audiophile friends.

I’ve got a shitty little apartment, no home system. But I drive Uber, and I take great pride in always having excellent music playing when I’ve got a passenger.

I play spotify through usb to the car’s system. It doesn’t sound so great.

But most of my friends are more well off than me, and have great home sound systems. One’s got an underground theater, with a super heavy door. You close that door, the silence is like being in a tomb.

chrismarquardt ,

„Audiophiles don't use their equipment to listen to your music. Audiophiles use your music to listen to their equipment.“

Alan Parsons

enix ,

I dunno if that's actually an Alan Parsons quote but up vote for any mention of his name.
Does sound like something he'd say.

Metju ,

At home:
FLACs ripped from CDs (prefer to buy albums I enjoy instead of Spotifying them) -> KORG DS-DAC 100 -> TEAC AX-501 -> Elac Carina BS243.4

On the go:
The same FLACs on Pixel 6 Pro -> B&O Beoplay HX

folkrav ,

I listen to music mostly on my computer and in the car. The car system is nothing special. I listen through either some ATH-M40fs cans, or Presonus Erie 3.5 monitors, which are honestly glorified bookshelf speakers, but decent for the price, IMHO. All running from my (older gen2) Focusrite 2i4 interface.

I used to listen in the train/metro/bus a lot more, but I now work remotely. That’s where I used Bluetooth stuff. No need to worry about the cable getting stiff in the cold or stuck in my winter jacket. I had a pair of Beats Studio 3 I paid less than $100 for that were pretty decent for the price I paid. The sound was as bass heavy as you’d imagine from the brand, but not terribly overpowering for casual listening, and the ANC in particular was pretty impressive. I also had some Anker wireless earbuds I got with a coupon on Drop (formerly Massdrop) that were good enough for listening to podcasts and having background music.

In terms of platforms, YouTube Music mostly, and a hand picked selection on Plex for stuff that’s not on there or that I want to have always available. The music discovery algorithms are completely useless for me though. It’s the one thing Spotify did better than YTM for me. The “My Mix” playlists and artist radios have been pushing me the same artists for months on end now. Want to know the ironic part? I discover most of my music on YouTube (not Music) nowadays…

skeletorfw ,

Honestly as far as cheap small monitors go, I really don't mind the Eries. They're not perfect for sure but they give a generally balanced sound and I paired them with a nice mackie sub to get pretty decent frequency coverage. Certainly perfectly decent for producing a variety of music and generally for listening to things.

folkrav ,

I’d put them in that gap between general purpose computer/multimedia speakers, and “proper” monitors. That product range used to be a pretty terrible place to be in, but these surprised me for sure. They’re flat-ish enough that I don’t feel like I’m shooting myself in the foot using them for light production work. The bass is indeed not quite it, but what can we really expect from drivers that size. I don’t have great experience using subs for production, but that’s probably me. They’re surprisingly good for the price point and form factor, at the very least.

skeletorfw ,

Yeah I think flat enough is the right phrase. Their bass is definitely lacking but with a well configured sub (I set the crossover at about 80Hz I think) you can compensate. My only feeling about producing with a sub is unless you're in a very well acoustically treated room, it's worth checking your mix on good headphones and a few sets of speakers to make sure your interesting sub bass parts are actually coming through nicely. They are good though to really work out what's going on in the sub frequencies of your mix. Also makes it really obvious when those areas are getting muddy.

Teknikal ,
@Teknikal@lemm.ee avatar

I use Neutron Audio Player which has a profile for my headphones but at the same time I don't really think Bluetooth could realistically be called audiophile.

So yeah I do the best with what I've got but don't really go crazy with it.

maculata ,

I’ve got a special speaker assembly that I shove up my ass*. The bass response is particularly pleasing.

  • this isn’t true.
wasabi , (edited )
@wasabi@feddit.de avatar

At Home:

  • FLACs via mpd with a topping headphone amp and Audeze LCD2C headphones
  • Vinyl using an Audio Technica LP120, a Denon AV receiver and cheap wharfedale bookshelf speakers and a Klipsch subwoofer. That Setup isn't really audiophile tbh, especially because the room sounds terrible.
  • Streaming via Qobuz on both systems

On the go:

  • Everything encoded as Opus 128 kbit/s to fit on my phone. Played over Lypertek Tevy true wireless IEMs. Not really audiophile but tbh when I'm not at home I care much more about convenience as long as the audio quality is good enough.
  • also Qobuz, but at MP3 320 quality to save bandwidth

I wrote my own scripts to tag the music and encode it to FLAC and Opus and use syncthing to copy the files to my phone. So whenever I add an album to the library it will be available every where I want in the specified format without any manual copying involved. It's a little janky but has worked surprisingly well for years.

mannycalavera ,
@mannycalavera@feddit.uk avatar

My ears.

No just joking, YouTube music mostly. It's convenient, available everywhere, has a large catalogue, and good enough quality for me.

SuckMyWang , (edited )

With all respect you’re not the definition of an audiophile at all. If anything you’re kind of the opposite

ARNiM ,

Not everyone can discern the difference between a 96KHz FLAC and 256kbps AAC.
I can't. But I still can (barely) tell the difference between 256kbps AAC, and 96kbps AAC.

But I can tell if a song was well-engineered or a mess.

I believe those who can't discern the difference between bitrates (especially on high bitrates), but have the appreciation for good music, good mixing, and good mastering, can still be considered audiophile.

teawrecks ,

That's not the comparison at hand, we're talking YouTube audio compression vs any actual music track.

bloodfart ,

Especially when your browser or application requests a high quality bitrate, youtube compression is opus 128.

A person could make the argument that it’s not lossless so it’s not worth listening to, but opus is extremely high quality especially at that bitrate.

If you wanna try it for yourself, take a flac or whatever, upload it to yt, then use something like yt-dlp -x that defaults to the highest quality to redownload just the audio stream.

ARNiM ,

YouTube Music Premium offers AAC 256kbps as the highest quality.

Format ID 141:
https://gist.github.com/AgentOak/34d47c65b1d28829bb17c24c04a0096f

Opus 128 is only for the audio of YouTube videos. Not YouTube Music.

bloodfart ,

and according to that same link it's 160, not 128 (format id 251!). someone else pointed that out itt.

one of my downloads had an average bitrate of ~140 when queried with mediainfo, so i believe em.

I don't have the premium account, what's aac256 comparable to?

ARNiM ,

AAC 256 should be at least on par with MP3 320 CBR, might also be on par with ogg vorbis at the same bitrate

pezhore ,
@pezhore@lemmy.ml avatar

As I get older and the abuse I put my ears through starts showing up, I completely agree. After upgrading my music library to FLAC from VBR mp3s, I stopped having the, "Oh! There's a subtle instrument going on in this part of the song!" moments.

It doesn't stop me from trying to listen to the highest quality music formats that I can get my hands on, but I 100% know if I think there's a difference to my mid-40s ears, it's probably a placebo.

scorpious ,

Yes. As a lifelong musician (live & recording), you’d think I’d be more fussy about audio quality…

But I’m just not. Just like the 4k vs 2k “debate”… It’s all about CONTENT.

dandroid ,

Also a musician here. I cared a lot when I was younger, but I have so many other more important things to care about now. You only have so my capacity to care about stuff in your life, and the quality of my music doesn't even come close to mattering these days.

  • All
  • Subscribed
  • Moderated
  • Favorites
  • asklemmy@lemmy.ml
  • random
  • test
  • worldmews
  • mews
  • All magazines